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1 Fundamental Forms

1.1 First fundamental form (Intrinsic Geometry)

Analogue to the arc length component ∥r′(t)∥2 = ⟨r′(t), r′(t)⟩ of a curve, we want to study the
local change of a surface S under the local parametrization x(u, v) . In Tutorial 5, we learn
the differentiation of a multi-variable function is not a “scalar”, but a collection of “partial
derivatives” to form a matrix. Define the first fundamental form of x at the point (u, v) by

I(u, v) =

(
E F
F G

)
=

(
⟨xu,xv⟩ ⟨xu,xv⟩
⟨xv,xu⟩ ⟨xv,xv⟩

)
which is a 2× 2 symmetric matrix.

1.2 Second fundamental form (Extrinsic Geometry)

Second Fundamental form does not store any information like area and lengths. It depends on
the normal vector n, which is outside of the tangent space. If x(u, v) is a regular parametrized
surface and it is C2, the second fundamental form of x at the point (u, v) is defined by

II(u, v) =

(
e f
f g

)
=

(
⟨xuu,n⟩ ⟨xuv,n⟩
⟨xvu,n⟩ ⟨xvv,n⟩

)
which is a 2× 2 symmetric matrix since by mixed derivative theorem, we have xuv = xvu.
We observe that xu,xv ⊥ n, so ⟨xu,n⟩ = ⟨xv,n⟩ = 0 is a constant. Differentiating both sides
with respect to u, v respectively, we get

⟨xuu,n⟩ = −⟨xu,nu⟩
⟨xuv,n⟩ = −⟨xu,nv⟩
⟨xvu,n⟩ = −⟨xv,nu⟩
⟨xvv,n⟩ = −⟨xv,nv⟩

2 Gaussian curvature (Extrinsic Way)

For a regular parametrized surface S under the local parametrization x(u, v) which is C2. The
Gaussian curvature of the surface S at the point (u, v) is given by

K(u, v) =
det(II)

det(I)
=

eg − f 2

EG− F 2

where I is the first fundamental form and II is the second fundamental form of the surface S
under the local parametrization x.

To understand the “intuitive meaning” of Gaussian curvature, we may first look at the sign
of K. The following are some simple examples:

• K > 0: Sphere

• K = 0: Flat Plane, Cylinder

• K < 0: Hyperboloid
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3 Extrinsic Method to Compute Gaussian curvature

To compute the Gaussian curvature K(u, v) of a surface S at the point (u, v) under a local
parametrization x, there are some general strategies to compute.

3.1 Method 1

1. We compute all partial derivatives of x first, i.e. xu and xv.

2. Then, we compute xu × xv to get the normal vector and get det(I) = ∥xu × xv∥2.

3. Normalizing xu × xv, define n =
xu × xv

∥xu × xv∥
to be the unit normal vector to S.

4. Compute all second order partial derivatives of x, i.e. xuu, xuv = xvu and xvv.

5. Calculate ⟨xuu,n⟩, ⟨xuv,n⟩ = ⟨xvu,n⟩ and ⟨xvv,n⟩ one by one.

6. Finally, plug into the extrinsic definition of Gaussian curvature and you will get

K =
det(II)

det(I)
=

⟨xuu,n⟩ ⟨xvv,n⟩ − ⟨xuv,n⟩2

∥xu × xv∥2

3.2 Method 2

1. We compute all partial derivatives of x first, i.e. xu and xv.

2. Then, we compute xu × xv to get the normal vector and get det(I) = ∥xu × xv∥2.

3. Normalizing xu × xv, define n =
xu × xv

∥xu × xv∥
to be the unit normal vector to S.

4. Compute all partial derivatives of n, i.e. nu and nv.

5. Calculate ⟨xu,nu⟩, ⟨xu,nv⟩ = ⟨xv,nu⟩ and ⟨xv,nv⟩ one by one.

6. Finally, plug into the extrinsic definition of Gaussian curvature and you will get

K =
(−1)2 det(II)

det(I)
=

⟨xu,nu⟩ ⟨xv,nv⟩ − ⟨xu,nv⟩2

∥xu × xv∥2

The above two methods are equivalent.

4 Examples

4.1 Sphere

A sphere of radius r and centered at the origin can be parametrized by

x(ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ), 0 < ϕ < π, 0 < θ < 2π

Compute

(a) The first fundamental form of the sphere under the local parametrization x.

(b) The second fundamental form of the sphere under the local parametrization x.

(c) The Gaussian curvature of the sphere under the local parametrization x.
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4.1 Sphere

Solution.

(a) First, we have {
xϕ = (r cosϕ cos θ, r cosϕ sin θ,−r sinϕ)
xθ = (−r sinϕ sin θ, r sinϕ cos θ, 0)

and then

⟨xϕ,xϕ⟩ = (r cosϕ cos θ)2 + (r cosϕ sin θ)2 + (−r sinϕ)2

= r2 cos2 ϕ(cos2 θ + sin2 θ) + r2 sin2 ϕ

= r2(cos2 ϕ+ sin2 ϕ)

= r2

⟨xϕ,xθ⟩ = (r cosϕ cos θ)(−r sinϕ sin θ) + (r cosϕ sin θ)(r sinϕ cos θ) + (−r sinϕ)(0)
= −r2 sinϕ cosϕ sin θ cos θ + r2 sinϕ cosϕ sin θ cos θ + 0

= 0

= ⟨xθ,xϕ⟩
⟨xθ,xθ⟩ = (−r sinϕ sin θ)2 + (r sinϕ cos θ)2 + 02

= r2 sin2 ϕ(sin2 θ + cos2 θ)

= r2 sin2 ϕ

Therefore, the first fundamental form required is

I =

(
r2 0
0 r2 sin2 ϕ

)
(b) From (a), we have

xϕ × xθ =

∣∣∣∣∣∣
i j k

r cosϕ cos θ r cosϕ sin θ −r sinϕ
−r sinϕ sin θ r sinϕ cos θ 0

∣∣∣∣∣∣
=

∣∣∣∣r cosϕ sin θ −r sinϕ
r sinϕ cos θ 0

∣∣∣∣ i− ∣∣∣∣ r cosϕ cos θ −r sinϕ
−r sinϕ sin θ 0

∣∣∣∣ j+ ∣∣∣∣ r cosϕ cos θ r cosϕ sin θ
−r sinϕ sin θ r sinϕ cos θ

∣∣∣∣k
=
(
r2 sin2 ϕ cos θ, r2 sin2 ϕ sin θ, r2 sinϕ cos θ

)
= r2 sinϕ · (sinϕ cos θ, sinϕ sin θ, cos θ)

Therefore, the unit normal vector is

n =
xϕ × xθ

∥xϕ × xθ∥
= (sinϕ cos θ, sinϕ sin θ, cosϕ)

and then {
nϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ)

nθ = (− sinϕ sin θ, sinϕ cos θ, 0)

⟨xϕ,nϕ⟩ = (r cosϕ cos θ)(cosϕ cos θ) + (r cosϕ sin θ)(cosϕ sin θ) + (−r sinϕ)(− sinϕ)

= r cos2 ϕ(cos2 θ + sin2 θ) + r sin2 ϕ

= r(cos2 ϕ+ sin2 ϕ)

= r
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4.2 Flat Plane

and similarly

⟨xϕ,nθ⟩ = (r cosϕ cos θ)(− sinϕ sin θ) + (r cosϕ sin θ)(sinϕ cos θ) + (−r sinϕ)(0)
= −r sinϕ cosϕ sin θ cos θ + r sinϕ cosϕ sin θ cos θ + 0

= 0

= ⟨xθ,nϕ⟩
⟨xθ,nθ⟩ = (−r sinϕ sin θ)(− sinϕ sin θ) + (r sinϕ cos θ)(sinϕ cos θ) + 0(0)

= r sin2 ϕ(sin2 θ + cos2 θ)

= r sin2 ϕ

So, the second fundamental form required is

II = −
(
⟨xϕ,nϕ⟩ ⟨xϕ,nθ⟩
⟨xθ,nϕ⟩ ⟨xθ,nθ⟩

)
=

(
−r 0
0 −r sin2 ϕ

)
(c) By parts (a) and (b), the Gaussian curvature of the sphere is

K =
det(II)

det(I)
=

(−r)(−r sin2 ϕ)

(r2)(r2 sin2 ϕ)
=

1

r2
.

Note. From the above, we can see the Gaussian curvature of sphere is everywhere positive.

4.2 Flat Plane

A flat plane can be parametrized by

x(u, v) = (u, v, c), u, v ∈ R

and c is a real constant. Show that the Gaussian curvature of the flat plane is everywhere zero.
Solution.
We first compute the components of its first fundamental form as follows:{

xu = (1, 0, 0)

xv = (0, 1, 0)

Then, we have

xu × xv =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣ = (0, 0, 1)

and n = xu × xv = (0, 0, 1).
Since xuu = xuv = xvu = xvv = 0, so the second fundamental form of the flat plane is

II =

(
0 0
0 0

)
Thus, the Gaussian curvature of a flat plane is

K =
0

02 + 02 + 12
= 0

Note 1. From the above, we can see the Gaussian curvature of flat plane is everywhere zero.
Note 2. By folding a flat plane towards the z-axis, it becomes a cylinder and the Gaussian
curvature of a cylinder is also zero.
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4.3 One-Sheeted Hyperboloid

4.3 One-Sheeted Hyperboloid

A one-sheeted hyperboloid has Cartesian equation
x2

a2
+
y2

a2
− z2

c2
= 1 can be parametrized by

x(u, v) = (a cosh v cosu, a cosh v sinu, c sinh v), u, v ∈ R

and a, c are positive real constants.
Show that the Gaussian curvature of the hyperboloid is everywhere negative.
Solution.

• Step 1: We first compute xu, xv.{
xu = (−a cosh v sinu, a cosh v cosu, 0)
xv = (a sinh v cosu, a sinh v sinu, c cosh v)

• Step 2: Find xu × xv and ∥xu × xv∥2.

xu × xv =

∣∣∣∣∣∣
i j k

−a cosh v sinu a cosh v cosu 0
a sinh v cosu a sinh v sinu c cosh v

∣∣∣∣∣∣
=


∣∣∣∣∣∣∣∣
a cosh v cosu 0
a sinh v sinu c cosh v

∣∣∣∣∣∣∣∣,−
∣∣∣∣∣∣∣∣
−a cosh v sinu 0
a sinh v cosu c cosh v

∣∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣∣
−a cosh v sinu a cosh v cosu
a sinh v cosu a sinh v sinu

∣∣∣∣∣∣∣∣


=
(
ac cosh2 v cosu, ac cosh2 v sinu,−a2 sinh v cosh v(sin2 u+ cos2 u)

)
=
(
ac cosh2 v cosu, ac cosh2 v sinu,−a2 sinh v cosh v

)
∥xu × xv∥2 = (ac cosh2 v cosu)2 + (ac cosh2 v sinu)2 + (−a2 sinh v cosh v)2

= a2c2 cosh4 v(cos2 u+ sin2 u) + a4 sinh2 v cosh2 v

= a2 cosh2 v(c2 cosh2 v + a2 sinh2 v)

• Step 3: Find the unit normal vector of the Hyperboloid.

n =
xu × xv

∥xu × xv∥
=

(c cosh v cosu, c cosh v sinu,−a sinh v)√
c2 cosh2 v + a2 sinh2 v

• Step 4: Compute xuu, xuv and xvv. (Of course, we don’t want to compute nu,nv)
xuu = (−a cosh v cosu,−a cosh v sinu, 0)
xuv = (−a sinh v sinu, a sinh v cosu, 0)
xvv = (a cosh v cosu, a cosh v sinu, c sinh v)

• Step 5: Calculate ⟨xuu,n⟩, ⟨xuv,n⟩ = ⟨xvu,n⟩ and ⟨xvv,n⟩ one by one.

⟨xuu,n⟩ =
−ac cosh2 v√

c2 cosh2 v + a2 sinh2 v

⟨xuv,n⟩ =
1√

c2 cosh2 v + a2 sinh2 v
(0)

= 0

= ⟨xvu,n⟩

⟨xvv,n⟩ =
1√

c2 cosh2 v + a2 sinh2 v
(ac cosh2 v(cos2 u+ sin2 u)− ac sinh2 v)

=
ac√

c2 cosh2 v + a2 sinh2 v
(∵ cosh2 v − sinh2 v = 1)
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• Step 6: Plug into the formula of Gaussian curvature.
Thus, the Gaussian curvature of the hyperboloid under the parametrization x is

K =
−ac(ac) cosh2 v/(c2 cosh2 v + a2 sinh2 v)− 0

a2 cosh2 v(c2 cosh2 v + a2 sinh2 v)

= − c2

(c2 cosh2 v + a2 sinh2 v)2

< 0

and the proof is completed.

Note. From the above, we can see the Gaussian curvature of One-sheeted hyperboloid is
everywhere negative.

5 More on Gaussian curvature

5.1 Curvature of graphs of functions

1. Let f(x, y), (x, y) ∈ D ⊂ R2, be a function with continuous second derivatives. The
Gaussian curvature of the graph of z = f(x, y) in rectangular coordinates is

K(x, y) =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )
2

2. Let f(r, θ), (r, θ) ∈ D ⊂ R+ × (0, 2π)be a function with continuous second derivatives.
The Gaussian curvature of the graph of z = f(r, θ) in cylindrical coordinates is

K(r, θ) =
r2frr(rfr + fθθ)− (rfrθ − fθ)

2

(r2 + r2f 2
r + f 2

θ )
2

5.2 Gaussian curvature of surfaces of revolution

1. By graph of function. Let f(z), z ∈ (a, b) be a function with continuous second
derivative. The Gaussian curvature of the surface obtained by rotating the graph of
x = f(z) on the xz-plane about the z-axis is

K(z) = − f ′′

f(1 + f ′2)2

2. By parametrized curve. Let (φ(u), ψ(u)), u ∈ (a, b) be a regular parametrized curve.
The Gaussian curvature of the surface obtained by rotating the curve (x, z) = (φ(u), ψ(u))
on the xz-plane about the z-axis is

K(u) =
ψ′(φ′ψ′′ − φ′′ψ′)

φ(φ′2 + ψ′2)

3. By arc length parametrized curve. Let (φ(s), ψ(s)), s ∈ (a, b) be a regular parametrized
curve. The Gaussian curvature of the surface obtained by rotating the curve (x, z) =
(φ(s), ψ(s)) on the xz-plane about the z-axis is

K(s) = −φ
′′

φ

The proofs of the above formulas on computing Gaussian curvature are easy, please refer to
Lecture Notes Page 106 to Page 109.
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6 Orthogonal Parametrization

Let S = x(u, v) be a regular parametrized surface. The parametrization is said to be orthog-
onal parametrization if F = ⟨xu,xv⟩ = 0, i.e. the first fundamental form of x(u, v) is of the
form

I =

(
E 0
0 G

)
6.1 Example - Helicoid

Verify that the helicoid is parametrized by

x(u, θ) = (u cos θ, u sin θ, θ), u, θ ∈ R

is an orthogonal parametrization.
Solution. We compute the first derivatives of x as:{

xu = (cos θ, sin θ, 0)

xθ = (−u sin θ, u cos θ, 1)

and therefore

⟨xu,xθ⟩ = (cos θ)(−u sin θ) + (sin θ)(u cos θ) + 0(1)

= 0

Thus, x is an orthogonal parametrization.

6.2 Intrinsic Way to Compute Gaussian curvature

Let x(u, v) be a regular parametrized surface. Suppose F = 0, i.e. the first fundamental form
of x(u, v) is

I =

(
E 0
0 G

)
Then, the Gaussian curvature of x(u, v) is

K(u, v) = − 1

2
√
EG

[(
Ev√
EG

)
v

+

(
Gu√
EG

)
u

]
Note 1. From the above, we can see the Gaussian curvature is only depending on the first
fundamental form, so it is an intrinsic information.
Note 2. We will discuss it in detail in the section - Theorema Egregium.

6.2.1 Example - Helicoid

Show that the Gaussian curvature of the helicoid parametrized by

x(u, θ) = (u cos θ, u sin θ, θ), u, θ ∈ R

is

K = − 1

(1 + u2)2
.
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6.2 Intrinsic Way to Compute Gaussian curvature

Solution. From the above, the first fundamental form is

I =

(
1 0
0 u2 + 1

)
Then, we have {

Eθ = 0

Gu = ∂
∂u
(1 + u2) = 2u

Plug into the formula of Gaussian curvature, we have

K = − 1

2
√
u2 + 1

[(
0√

1 + u2

)
θ

+

(
2u

1 + u2

)
u

]
= − 1√

u2 + 1

(√
1 + u2 − u

(
u√
1+u2

)
1 + u2

)
= − 1

(1 + u2)2

6.2.2 Lecture Notes Exercise 3 Q12

Find the Gaussian curvature of the parametrized surface x(u, v) with the following first funda-
mental forms.

(a) I =

 1

u2
0

0
1

v2



(b) I =

 1

u2 + v2 + 1
0

0
1

u2 + v2 + 1


(c) I =

(
1 0
0 cosh2 u

)

6.2.3 Lecture Notes Exercise 3 Q13

Suppose the first fundamental form of a parametrized surface x(u, v) is given by

I =

(
f 2 0
0 f 2

)
where f = f(u, v) > 0 is a twice-differentiable function. Show that the Gaussian curvature of
the surface is

K = − 1

f 2
∆ ln f

where ∆ := ∂2

∂u2 +
∂2

∂v2
is called the Laplacian.
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7 Gauss map

7.1 Definition

Let S be a regular surface in R3 with regular parametrization x(u, v). For each point p = x(u, v),
we associate the unit normal vector n(p) to p. This defines a map n : S → S2 from the surface
S to the unit sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1} and it is called the Gauss map of S at
the point p.

7.2 Example

7.2.1 Example 1

Show that the Gauss map of a regular parametrized surface S to S2 is well-defined.

Proof. Let x(u, v) be a local parametrization of S.
Since S is a regular surface, so by the definition, we have xu × xv ̸= 0 for any points (u, v).

We can define a map n : S → S2 by n(x(u, v)) =
xu × xv

∥xu × xv∥
which satisfies

∥n(x(u, v))∥ = 1

and thus n(x(u, v)) ∈ S2.

7.2.2 Example 2

A Menn’s surface Φ : (0, 2π)× (−1, 1) → R3 is parametrized by

Φ(u, v) = (u, v, au4 + u2v − v2), (u, v) ∈ R

where a is a constant. Find the Gauss map of the Menn’s surface at the point p = Φ(u, v).

Solution. First, we compute {
Φu = (1, 0, 4au3 + 2uv)

Φv = (0, 1, u2 − 2v)

Next, we find the direction of the normal vector to the Menn’s surface as:

Φu × Φv =

∣∣∣∣∣∣
i j k
1 0 4au3 + 2uv
0 1 u2 − 2v

∣∣∣∣∣∣
=
(
−4au3 + 2uv, 2v − u2, 1

)
and

∥Φu × Φv∥ =
√

(−4au3 + 2uv)2 + (2v − u2)2 + 1

Thus, the Gauss map of the Menn’s surface at the point p = Φ(u, v) is

n(p) =
1√

(−4au3 + 2uv)2 + (2v − u2)2 + 1

(
−4au3 + 2uv, 2v − u2, 1

)
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Note that nu,nv are lying on the tangent space spanned by xu,xv as well as both of them
are orthogonal to n, so the cross product nu × nv is normal to the surface S as well and there
is a scalar multiple of xu × xv. This multiple is exactly the Gaussian curvature.

8 Gauss Map and Gaussian Curvature

Let x(u, v) be a regular parametrized surface and n(u, v) be the unit normal vector at x(u, v).
Then

nu × nv = Kxu × xv

where K is the Gaussian curvature of the surface.

8.1 Examples (Lecture Notes Exercise 3 Q20)

Let x(u, v) be a regular parametrized surface and n = xu×xv

∥xu×xv∥ be the unit normal vector.
Since nu,nv are coplanar with xu,xv, so from what we learned in Tutorial 2, we can express
nu,nv as a linear combination of xu,xv, we write{

nu = a11xu + a12xv

nv = a21xu + a22xv

(a) Prove that (
a11 a12
a21 a22

)
= −(II)(I)−1

Note. This is the matrix representation of the differential of the Gauss map with respect
to the basis xu,xv.

(b) Show that

nu × nv = det

(
a11 a12
a21 a22

)
xu × xv =

eg − f 2

EG− F 2
xu × xv

Solution.

(a) First, we compute ⟨nu,xu⟩ , ⟨nu,xv⟩ and ⟨nv,xv⟩ one by one.
⟨nu,xu⟩ = a11 ⟨xu,xu⟩+ a12 ⟨xv,xu⟩
⟨nu,xv⟩ = a11 ⟨xu,xv⟩+ a12 ⟨xv,xv⟩
⟨nv,xu⟩ = a21 ⟨xu,xu⟩+ a22 ⟨xv,xu⟩
⟨nv,xv⟩ = a21 ⟨xu,xv⟩+ a22 ⟨xv,xv⟩

and then we rewrite the above system as

(
⟨nu,xu⟩
⟨nv,xu⟩

)
=

(
a11 a12

a21 a22

)(
⟨xu,xu⟩
⟨xv,xu⟩

)
(
⟨nu,xv⟩
⟨nv,xv⟩

)
=

(
a11 a12

a21 a22

)(
⟨xu,xv⟩
⟨xv,xv⟩

)
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8.1 Examples (Lecture Notes Exercise 3 Q20)

Then, we put these column vectors together gives(
⟨nu,xu⟩ ⟨nu,xv⟩
⟨nv,xu⟩ ⟨nv,xv⟩

)
︸ ︷︷ ︸

−II

=

( (
a11 a12
a21 a22

)(
⟨xu,xu⟩
⟨xv,xu⟩

) (
a11 a12
a21 a22

)(
⟨xu,xv⟩
⟨xv,xv⟩

) )

and right-hand side is equivalent to the matrix multiplication(
a11 a12
a21 a22

)(
⟨xu,xu⟩ ⟨xu,xv⟩
⟨xv,xu⟩ ⟨xv,xv⟩

)
︸ ︷︷ ︸

I

Thus, we have

−II =

(
a11 a12
a21 a22

)
I(

a11 a12
a21 a22

)
= −(II)(I)−1

(b) By direct computation, we have

nu × nv = (a11xu + a12xv)× (a21xu + a22xv)

= a11a21 xu × xu︸ ︷︷ ︸
0

+a11a22xu × xv + a12a21xv × xu + a12a22 xv × xv︸ ︷︷ ︸
0

= a11a22xu × xv − a12a21xu × xv

=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣xu × xv

and from part (a), we have

det

(
a11 a12
a21 a22

)
= det

[
(−1)(II)(I)−1

]
= (−1)2 · det(II)

det(I)
(∵ I, II are square matrices)

=
eg − f 2

EG− F 2

Thus, the proof is done.

Note 1. The above matrix representation of the “negative differential of Gauss map” has
an alternative name, called the “Shape operator”.

Note 2. In Tutorial 8 and afterwards, we will use shape operator to compute other curva-
tures and study both extrinsic and intrinsic geometry of a surface, for example Mean curvature,
Principal curvatues, Normal curvature, etc.
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